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Additional symmetry properties of the ground state of an atom and quantities related with it, of the configuration with two 
open shells with the same orbital quantum number, and of the maximal Auger amplitudes are considered. Algebraic energy 
expressions for terms of the highest multiplicity and terms related with them as well as for the ground and highest levels are 
presented. Classification of states for the  configuration according to their parentage in the isoelectronic sequence 
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discussed. Existence of selection rules for the maximal Auger amplitudes is indicated.
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1. Introduction

Symmetry properties play a very important role in the 
atomic theory, they point to the essential features of the 
many-electron system. The basic symmetries intrinsic 
to an atom were noticed already at the formulation of 
quantum mechanics: the antisymmetric property of 
wavefunction, the central symmetry of the field within 
an atom, and the electron-vacancy symmetry. Conser-
vation of the angular momentum, not only of the total 
momentum of an atom but also approximately of the 
moments of separate electrons and their groups, fol-
lows from the central symmetric model of a free atom. 
For this reason the concept of angular momentum is 
of the main importance to atomic physics [1]. Various 
symmetric properties for the matrix elements of Ham-
iltonian and other physical operators were determined 
by the general theory of quantum angular momentum 
[2, 3], especially by the mathematical formalism of ir-
reducible tensorial operators (Wigner-Ecart theorem, 
selection rules, quasispin concept, etc.) [4–7]. The 
second quantization method enables one to transfer 
the antisymmetry properties from the wavefunctions 
to the operators, introduces the conjugation opera-
tion and useful additional relations [8]. The theory of 
groups reveals the hidden symmetries, for example, 

the degeneracy of a hydrogen atom [9], applicability of 
a quark model for the fN shell [10], unexpected vanish-
ing of some matrix elements of operators [10, 11].

The aim of this paper is a review of additional 
symmetries characteristic of some states of configu-
rations with one and two open shells. These results 
were mainly published in papers [12–18]; in this work 
some expressions are corrected or presented in a more 
useful form as well as the comparison of theoretical 
results with new experimental data is presented.

2. Algebraic expressions for the energy of the 
highest multiplicity terms and of the ground and 
highest levels

2.1. Space of states with the fixed spin projection 
and the expressions for operators in such a space
According to the spin-polarised model, the shell of 
electrons can be treated as consisting of two subshells 
with spins of electrons directed up and down [19, 
20]. However, such a model usually does not give any 
advantage, because this partition between subshells 
may be accomplished in various ways. It becomes un-
ambiguous only for terms of the highest multiplicity. 
Then only one open subshell appears:
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 (1)

Attribution of the spin projection in this open sub-
shell is conventional; it is accepted that the spins of all 
its electrons are directed up.

Such additional constraint for the distribution of 
electrons in the subshells and the application of elec-
tron-vacancy symmetry for the open subshell enables 
one to obtain the explicit expressions for energy of the 
highest multiplicity state and its quantum numbers.

In the second quantization representation, let us 
introduce the following operator having the form of 
the tensorial product of rank k:

Aq
(k) = [a(l)† × ~a(l)]q

(k),   (2)

where am
(l)† is the electron creation operator in the state 

nlm and the spin directed up, and ~aq
(l) = (–1)l–mam

(l)  is 
related with the electron annihilation operator am

(l) in 
the same state. Using the known anticommutation 
rules for the operators am

(l) and am
(l)†, the following rela-

tions for operator (2) and for the other similar tenso-
rial product can be obtained [13]:

 

(3)

  (4)

Here the quantity in the braces is 6j coefficient.
Equations (3) and (4) at various values of rank k 

present the system of equations for operator (2). Tak-
ing into account that in particular cases this operator 
or some its combinations are expressed via the opera-
tors with the known eigenvalues, the explicit formu-
lae for operator (2) are obtained. They can be applied 
for the derivation of expression for the Coulomb in-
teraction energy of the highest multiplicity state γm. 
The coefficient fk at the radial integral Fk(nl, nl) is ex-
pressed in terms of the matrix element of operator (2):

 (5)

Here 〈||C (k)||l〉 is the single electron submatrix ele-
ment of the spherical function of rank k.

Only one solution of Eqs. (3) and (4) is sufficient 
for the consideration of the pN shell:

  (6)

In the case of d electrons the second relation must be 
added:

 (7)

It is replaced by the following equation for f electrons:

 (8)

However, yet one additional equation is necessary for 
the fN shell. It follows from the formula for the Casimir 
operator of the G2 group in the spin-up space:

. (9)

2.2. Coulomb and spin-orbit energy for the terms of 
the highest multiplicity and the terms related with 
them

Expressions of the coefficients fk for terms of the 
highest multiplicity can be obtained using Eqs. (6)–
(9) and relation (5). In order to take into account the 
electron-vacancy symmetry, the coefficients fk' with 
the excluded average value  –fk must be considered:
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        (10)

It is convenient to introduce also the quantity  which 
is equal to the number of electrons N for a partially-
filled shell (N < 2l + 1) and to the number of vacan-
cies 4l + 2–N for a half-filled and almost-filled shell 
(N ≥ 2l + 1):

               (11)

Evaluation of Eqs.  (5)–(8) for the particular val-
ues of l and k gives the following expressions for the 
spin-angular part of Coulomb interaction energy in 
the case of the highest multiplicity states [13]:

 ,   (12)

               (13)

             (14)

     (15)

        (16)

              (17)

where (G2) is the eigenvalue of the operator (G2):

(G2) = (u1
2 + u2

2 + u1u2 + 5u1 + 4u2)/3.             (18)

Algebraic formulae for all terms of the pN shell 
were obtained in [4].

It is necessary to add to Eqs. (12)–(17) also the ex-
pression for the energy of spin-orbit interaction for 
the highest multiplicity state:

 ,       (19)

where ξ( l) is the spin-orbit constant.
All the terms of the highest multiplicity for the pN, 

dN and fN shells are given in the Table.
It is also possible to derive the algebraic expres-

sions for the terms with the seniority number υ = 2S. 
They can be obtained from the corresponding for-
mulae for the terms of the highest multiplicity using 
the relation between the matrix elements for the lN 
configuration at υ = 2S and for the lυ configuration at 
S = υ/2 [21]:

 (20)

Such terms are also given in the Table.

3. Electrostatic and spin-orbit energy for the 
ground and highest levels

Except the heaviest atoms, the coupling scheme with-
in an electronic shell is usually close to the LS cou-
pling. Then, according to the Hund’s rule, the ground 
level is of the highest multiplicity. It easily follows that 
the many-electron quantum numbers for such a level 
can be expressed in terms of the  number:

 ,               (21)

 ,                 (22)

      (23)
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Table. Terms of the lN shell: ground term, other terms of the highest multiplicity and related with them. For all these 
terms the matrix elements of Coulomb and spin-orbit interaction operators have the algebraic expressions.

Shell
Terms

Ground Other terms 
of maximal multiplicity Related with the terms of maximal multiplicity

p2 3
2P

1
0S

p3 4
2S

2
1P

d2 3
2F

3
2P

1
0S, 1

2D, 1
2G

d3 4
3F

4
3P

2
1D

d4 5
4D

d5 6
5S

f 2

f 3

f 4

f 5

f 6

f 7

Here υ is a seniority and Q is quasispin quantum 
numbers.

Eigenvalue of the Casimir operator for the G2 
group can be also presented in such a form [13]:

               (24)

While using expressions (21) and (24) in Eqs. 
(12)–(17), the spin-angular coefficients fk' for the 
ground state γg are presented in a form of the de-
gree polynomial [13]:

 ,  (25)

 , (26)

 ,      (27)

 ,      (28)

 ,     (29)

 ,   (30)

where  denotes the following:

  (31)

Expression for the ground state spin-orbit energy 
is obtained from Eq. (19) on substituting the formu-
lae for L (21) and J (23):

      (32)
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The other important energy level is the highest 
one. Consideration of experimental data for the at-
oms with the lN open shell obeying the LS coupling 
scheme shows that such a level is 10S at an even number 
of electrons N and 2

1ll+1/2 (if N  <  2l  +  1) or 2
1ll–1/2 (if 

N ≥ 2l + 1) at the odd number N. Thus, contrary to 
the ground level, the highest level is of the lowest pos-
sible multiplicity. However, according to Eq. (20), its 
matrix element is related with a simple or vanishing 
one for the shells l1 or l0. This gives finally for f 'k [13]:

,              (33)

          (34)

The corresponding expressions for the spin-orbit en-
ergy of the highest level follow from Eq. (19) taking 
into account the relation analogical to Eq. (20):

〈lN(υ = 2S)LSJ|Hso|l
N(υ = 2S)LSJ〉

 
,           (35)

Eso(nlN 1S) = 0,                (36)

               (37)

        (38)

4. Symmetry with respect to a quarter of shell and 
the interval rules

Some important physical and chemical quantities 
show the symmetry with respect to a quarter of shell. 
They all are related with the ground state of an atom. 
Various explanations of such regularities were pro-
posed: the Coulomb or spin-orbit interactions within 
the fN shell, the extra stabilization in the crystal field, 
the nephelauxetic effect [22, 23]. This symmetry is 
mainly investigated for lanthanides and actinides be-
cause the fN shell preserves the atomic properties in 
compounds and, moreover, such a property manifests 

itself more distinctly for a shell with a larger number 
of electrons. Thus, we will restrict our consideration 
to the atoms with one open fN shell. For the descrip-
tion of f electrons it is more convenient to introduce 
the linear combinations of radial integrals Fk and co-
efficients f 'k namely, Ek and e'k which possess the well-
defined group properties [5]:

,     (39)

 ,         (40)

,               (41)

,               (42)

 ,            (43)

.               (44)

Spin-angular coefficient e'k is also defined with the ex-
cluded average value. Then the energy of the ground 
state γg is expressed as follows:

E(n f Nγg) = Eav (n f N) + ∑ie'i (f 
Nγg)E i + χ (f Nγg) ξnf . (45)

One of the main atomic quantities, the binding en-
ergy of an electron in the shell (the ionization energy 
of shell), is defined as the energy difference of an ion 
with the vacancy in this shell and an atom in their 
ground states:

Inl = E(nlN–1γ'g) – E(nlN γg).                (46)

Dependence of this difference on N is mainly deter-
mined by the variation of coefficients e'k and Δ χ, thus, 
the binding energy for the f electron can be approxi-
mated in the following way:

Inl(nf N) ≈ Eav(nf N–1) – Eav(nf N) + ∑iΔe'i( f N) Ei 

+ Δχf ( f N)ξnf,                 (47)

where Δe'i and Δχ present the differences: 

Δe'i( f N) = e'i( f N–1) – e'i( f N),                (48)

Δχ
f ( f N) = χf( f N–1) – χf( f N).                (49)
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The main advantage of coefficients e'i is the vanish-
ing of the difference for the second coefficient:

Δe'2( f N) = 0.                  (50)

The other differences Δe'k are expressed in terms of the 
number of electrons using Eqs.  (42)–(44) as well as 
Eqs. (28)–(30):

               (51)

 .  (52)

Δe'3 equals 0 at N = 1, 7, 8 and 14.
Expression for Δχf follows from Eq. (32), but the 

more compact formula is obtained using the symme-
try property for this quantity:

               (53)

All these explicit expressions enable one to inves-
tigate the dependence of quantities, obeying the sym-
metry with respect to a quarter of shell, on the number 
of electrons in this shell. According to the Koopman’s 
theorem, the average energy part in Eq.  (47) is ap-
proximately equal to the single-electron energy and 
depends almost linearly on the atomic number. Dif-
ferences Δe'1 and Δe'3 as the functions of N consist of 
two similar segments (symmetry with respect to a 
half of shell) and each segment can be coincided 
with itself performing the rotation by the angle of 
180° around the points corresponding to N0 = 4 or 11 
(symmetry with respect to a quarter of shell) (Fig. 1). 
Difference Δχf obeys the symmetry with respect to a 
quarter of shell, but only the distorted symmetry with 
respect to a half of shell.

In lanthanides and even in actinides, the structure 
of the fN shell is mainly determined by the Coulomb 
interaction. Thus, the variation of Inl(f N) with N most-
ly depends on the difference of the first coefficient Δe'1 
at the largest integral E1 (Fig. 2). This difference in-
creases linearly up to the half of shell, suddenly jumps 
from 4.2 to –4.2 on going from N = 7 to 8 and then the 
second symmetric branch appears. This main regu-
larity is slightly modified by smaller contributions of 
Δe'3 and Δχf having more complex dependence on N. 
The experimental values of Inf and results of calcula-
tion in the single-configuration approximation show 

a very similar dependence. It was explained in [17]: 
some significant configuration mixing effects also 
maintain this additional symmetry.

The other important quantity for the lanthanide 
atoms is the system difference (SD). It presents the 
difference between the energies of the lowest levels of 
4f N–15d6s2 and 4f N6s2 configurations [22]. Although 
the 4f electron is not removed but excited to the 5d 
shell, the SD is mainly determined by the change of 
the number of 4f electrons.

Fig. 1. Dependence of the differences of coefficients 
Δe'1 (f N), Δe'3 (f N) and Δχf(f N) on the number of electrons 
N. In order to compare the influence of these coefficients 
on the value of binding energy for triple lanthanide 
ions the coefficient Δe'3 is multiplied by E3/E1and Δχf 
by the ratio ξ4f /E

1 (E1 and ξ4f are calculated for Gd3+ 4f 7 

configuration).

Fig. 2. Binding energy I4f in the sequence of triply ion-
ized lanthanides: (1)  experiment [24]; (2)  calculation 
using algebraic formulae for the ground level; (3) single-
configuration quasirelativistic calculation; (4)  calcula-
tion taking into account 1400–2100 admixed configura-
tions corresponding to two-electron and single-electron 
excitations [17].
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Such a symmetry can manifest itself also for the 
other quantities related with Inl or SD. Namely, it was 
discovered for the ratio of intensities for the strongest 
lines of transitions [25]

4f N6s6p – 4f N6s2 · (I1),

4f N–15d6s6p – 4f N–15d6s2 (I2)                (54)

emitted by lanthanide elements in the calibrated arcs 
(Fig. 3). It was shown in [15] that such an unexpected 
property of the ratio I1/I2 is caused by the depend-
ence of the ratio of populations on SD and the partial 
cancellation of terms arising in the expression for in-
tensity from the level population and the transition 
probability.

orbit constant ξnf and the term-independent part of 
binding energy by the series in terms of the number 
of electrons as well as by using the symmetry proper-
ties for the coefficients Δe'i and Δχf [16]. Then the fol-
lowing expressions for the ratio of binding energies 
were obtained:

               (55)

 .               (56)

The second term Δ presents a correction which 
is mainly determined by the spin-orbit interaction. 
Δ usually obtains a small value for neutral and se v-
eral-times-ionized atoms.

5. Additional symmetry for the states of 
n1 l 

N1 n2 l 
N2  configuration

Configuration with two open shells can obtain ad-
ditional symmetry properties, especially at the same 
orbital quantum number. Let us consider the iso-
electronic sequence of configurations (IC sequence) 
corresponding to the transfer of an electron from the 
second shell to the first one:

    (57)

This IC sequence ends with the  configura-
tion when N1 + N2 ≤ 4l + 2, or with the  

when N1 + N2 > 4l + 2. We assume that n1 > n2 and 

Fig. 3. System difference (SD) (•) [24] and the ratio of 
intensities ln (I1/I2) (∆) [25] in calibrated arcs for the 
neutral lanthanide atoms. I1 and I2 correspond to the 
strongest lines of the transitions (54). In order to plot 
both quantities on the same scale, the values of SD are 
divided by kT, where k is the Boltzman constant and 
T = 6440 K is the approximate temperature in the arc at 
the local thermodynamic equilibrium.

The symmetry with respect to a quarter of shell 
also approximately holds for some chemical quanti-
ties (cohesive energy, enthalpy of decomposition or 
disproportionation, α parameter for the reaction with 
formation of ion with smaller number of f electrons) 
related with the binding energy of a free atom (Fig. 4). 
Such symmetry is also the reason of interval rules for 
binding energies. These rules were formulated em-
pirically for the ionization energies and oxidation po-
tentials in [27] and derived theoretically for binding 
energies of free atoms in [14, 16]. They were proved 
by expanding the radial integrals Ei or Fk, the spin-

Fig. 4. The second ionization energy I2 (o) (experimental 
values) [24], the enthalpy of decomposition Hp (∇) and 
the α parameter (•) in the lanthanide series. The semi-
empirical data for Hp and α correspond to the reaction 
nHaI2 →1/3 Ln + 2/3 HaI3, they are taken from [26].
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N1 ≥ N2, then the number of states of any configuration 
in the IC sequence is always larger than the number 
of states of the next configuration. Thus, the number 
of terms with the same final quantum numbers LS in-
creases and the terms with the new LS appear in the IC 
sequence. This enables one to introduce the classifica-
tion of terms according to their appearance in the IC 
sequence [12]. Terms are described by the additional 
quantum numbers i and β: i indicates the configuration 
in which the term with the given LS appears for the 
first time (it is taken equal to the number of electrons 
in the second shell of this configuration), while the β 
denotes the terms with the same LS values in the con-
sidered configuration. It is necessary to mention that it 
stands for the analogue of the seniority quantum num-
ber which designates the shell in which the given term 
appears for the first time.

The |βiLS> wavefunctions can be presented in a 
form of linear combinations of functions in the LS 
coupling scheme:

|n1l
N1n2l

N2βiLS> =

∑α1L1S1α2L2S2
〈n1l

N1n2l
N2α1L1S1α2L2S2LS|βiLS〉

×|n1l
N1n2l

N2α1L1S1α2L2S2LS〉.               (58)

Wavefunctions of the IC sequence are expressed 
via the same spin-angular single-electron functions 
and differ only by the radial orbitals. Let us introduce 
the function

|n1l
N1+N2–kn2l

k → n1l
N1n2l

N2βiLS>,             (59)

which is obtained from  |n1l
N1+N2–kn2l

kβiLS> by replac-
ing the N2 – k radial orbitals R(n1l|r) with R(n2l|r) (it 
is a generalization of function ~Ψ  introduced in [28]). 
Expression for the expansion coefficients in Eq. (58) 
can be obtained using the equality

|n1l
N1n2l

N2 βiLS>=|n1l
N1+N2–kn2l

N2 → n1l
N1n2l

N2βiLS> (60)

as well as by expressing function (60) in terms of the 
fractional parentage coefficients and transformation 
matrix, as was considered in [28, 29]. For example, 
in the case N2 = 1 and i = 0 the expansion coefficient 
in Eq. (58) is equal simply to the fractional parentage 
coefficient [12]:

〈lNlα1L1S1LS|α(i = 0)LS〉 = (lN+1αLS||lNα1L1S1l).  (61)

The other, more simple method to determine 
the |βiLS〉 functions, follows from the diagonality of 
spin-angular coefficients g0 at the main radial integral 

G0(nl, nl) in this basis. Indeed, the scalar term in the 
Coulomb energy expression corresponds to the zero-
rank operator ∑i<j(Ci

(0)  ·  Cj
(0))r>

–1 the angular part of 
which is the permutation operator of angular coordi-
nates of electrons between shells. On the other hand, 
according to Eq. (60), the |βiLS 〉 wavefunctions must 
be invariant under such a permutation. Consequent-
ly, the expansion of |βiLS 〉 wavefunctions in the basis 
of usual functions can be obtained by the diagonaliza-
tion of the ||g0|| matrix.

The diagonal elements of ||g0|| were found in [12] 
as follows:

0(lN1lN2βiLS) = –N1N2 – i(N1 + N2) + i(i – 1).  (62)

Introduction of the new basis was reformulated 
in a more strict mathematical form using the isospin 
concept [30, 21, 7]. The n1l and n2l electrons can be 
treated as two states of l electron (an analogy with pro-
ton and neutron considered as two states of the same 
particle – nucleon). It is supposed that both states of 
l electron differ by the isospin quantum number, which 
obtains two possible values 1/2 and –1/2. Angular 
operators T(1) and T2 acting in the additional isospin 
space are introduced. The operator T 1

(1) annihilates an 
electron in the first shell and creates an electron in the 
second one, while the operator T -1

(1) does the reverse. 
The eigenvalue of T2 is T(T–1), where the quantum 
number T is related with the earlier introduced:

T = (N1 + N2 – 2i) / 2.       (63)

Expression (62) for g0 (62) was obtained as an ei-
genvalue of some combination of isospin operators.

In the isospin formalism, the additional classifica-
tion of repeating terms TLS was proposed using the 
irreducible representations of unitary group U8l+4 and 
its subgroups [21].

Some important properties of the new basis were 
established in [12]. If the n1l

N1n2l
N2 configuration is the 

highest one among the configurations in the IC se-
quence (57), then the terms with i = N2 appear in this 
configuration for the first time and are absent in the 
other lower-lying configurations. Consequently, the 
|n1l

N1n2l
N2β (i = N2) LS〉 wavefunctions are automati-

cally orthogonal to the lower configurations of the 
same symmetry. It is guaranteed by the correspond-
ence of such functions to the absolute minimum 
of the functional when the variational method is ap-
plied for their calculation. The best functional of such 
a type presents the energy of configuration averaged 
over all terms appearing first in this configuration. 
Expressions for such average coefficients of the Cou-
lomb interaction were obtained by supposing their 
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quadratic dependence on the number of electrons in 
the shells and using the explicit expressions for the 
simplest configurations l4l+1l,  l4l+1l4l+1 and ll. The final 
result is the following [12]:

               (64)

               (65)

              (66)

                (67)

Such a functional takes into account also some 
correlation effects: in the isospin basis some inter-
configuration matrix elements between the lN1lN2  and 
lN1–1lN2+1 configurations vanish [12, 31]. This prop-
erty along with the diagonality of the main part of 
the Coulomb exchange energy demonstrate the ad-
vantages of the isospin basis in comparison with the 
usual basis for the n1l

N1n2l
N2 configuration.

It is necessary to note that at the equal numbers of 
electrons in both open shells there exists an additional 
symmetry in the radial space: the Hartree-Fock func-
tional is invariant under the rotation of R(n1l|r) and 
R(n2l|r) radial orbitals. The most exact functions for 
these electrons are the solutions of Hartree-Fock equa-
tions with the nondiagonal Lagrangean multiplier 
εn1l,n2l equal to 0. It was shown for nln’l and nl4l+1n’l4l+1 
con figurations in [28] and extended for any N in [12]. 
An important relationship between the unitary trans-
formations of radial wavefunctions and rotations in the 
isospin space was established in [21, 7].

6. Maximal values of Auger amplitudes and 
selection rules for their quantum numbers

The calculated Auger or radiative spectrum corre-
sponding to the transitions between two configurations 
with open shells contains a large number of lines which 
intensities vary by many orders of the magnitude. 
While the initial levels are populated non-selectively, 
the intensities of lines are mainly determined by the 
amplitudes of transitions. Thus, their maximal values 
play an exceptional role in the formation of spectrum.

A general expression for the amplitude of the Au-
ger transition has a rather complicated form. It con-
tains fractional parentage coefficients, 3nj coefficients 
and the summation over intermediate states. Thus, it 
seems rather probable that the maximal value of the 
amplitude varies non-regularly with the number of 
electrons in an open shell. However, the investigation 
of maximal values of Auger amplitudes performed in 
[18] showed that there exist hidden symmetry prop-
erties for these quantities too.

Let us consider one of the two main types of Auger 
transitions:

n1l1
4l1+1n2l2

N2 – n1l1
4l2+2n2l2

N2–1εl.              (68)

The amplitude of the Auger transition is defined 
as follows:

[  A(n1l1
4l1+1j1n2l2

N2γ2L2S2J2J

– n1l1
4l2+2n2l2

N2–1γ'2L'2S'2J'2εljJ]1/2,               (69)

where  is the statistical weight of the initial level 
equal to 2J+1, A is the rate of the Auger transition 
and γ denotes the additional many-electron quantum 
numbers of shell except when indicated explicitly. The 
square root of the rate is used instead of the matrix 
element in order to obtain a positive quantity.

The maximal value of Auger amplitudes (MVAA) 
between two configurations was selected from the set 
of amplitudes corresponding to all possible values of 
quantum numbers γ2 L2 S2 J2 J and γ'2 L'2 S'2 J'2 at the given 
numbers j1 and lj. These quantities were calculated 
in the single-configuration intermediate and pure 
coupling schemes using the quasirelativistic Hartree-
Fock wavefunctions (the Cowan code) [6]. The fol-
lowing transitions involving various inner vacancies 
and outer open shells were considered:

3s3dN2 – 3s23dN2–2εlj   Ti–Cu, (70)

4s4pN2 – 4s24pN2–2εlj   Ge–Kr, (71)

2p5j13dN2 – 2p63dN2–2εlj  Ti–Cu, (72)

2p5j14dN2 – 2p64dN2–2εlj  Zr–Pd, (73)

3d9j14pN2 – 3d104pN2–2εlj  Ge–Kr. (74)

All in all, 303 sets of amplitudes with the given val-
ues of N2, j1 and lj were examined. For all considered 
transitions MVAA vary within a relatively narrow 
interval and rather smoothly with N in both inter-
mediate and pure coupling schemes; a typical exam-
ple is given in Fig. 5.
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Variation of many-electron quantum numbers of 
MVAA on N was considered in the pure coupling 
scheme, only then strict selection rules are possible. 
Symmetry with respect to the number of electrons 
N  =  2l  +  2 is evident for the quantum numbers of 
the open shell in the initial and final configurations 
(Fig. 6). It corresponds to the electron-vacancy sym-
metry, which centre is shifted by 1 from a half-filled 
shell due to the difference of electron numbers in 
both configurations. Thus, this symmetry follows 
from the two-electron fractional parentage coeffi-
cient – the single multiplier in the expression for the 
transition amplitude having such a property. Values 
of many-electron quantum numbers of MVAA de-
pend on N very regularly. For the majority of con-
sidered sets (297 from 303) the difference of spins 
obeys the rule:

ΔS2 = S'2 – S2 = 0.      (75)

Differences of orbital and total quantum numbers 
often correspond to the similar rule:

ΔL2 = ΔJ2 = 0,                 (76)

but for the sets of amplitudes with the l = l1 and j = j1 
the other rule is valid:

ΔL2 = ΔJ2 = N – 2l2 – 2.                (77)

However, the both rules are violated in about the 
fourth part of sets.

Validity of such rules does not follow from the 
known properties of matrix elements and indicates 
the existence of hidden symmetries.

7. Conclusions

The many-electron atom is a very complex system, 
thus, it is important to use its symmetry properties 
for the investigation of an electronic structure of an 
atom and regularities of atomic quantities. In this re-
view, several additional symmetry properties of some 
atomic states are considered. The atom with one open 
shell in its highest multiplicity state can be consid-
ered as having one open spin-polarised subshell. This 
reduction enables one to derive the explicit expres-
sions for the quantum numbers and the matrix ele-
ments of physical operators for the ground state of an 
atom. These expressions obtain a very simple form 
of the  degree polynomial. It is demonstrated that 
such a model successfully explains the symmetry with 
respect to a quarter of shell, which is characteristic 

Fig. 6. Dependence of the quantum numbers L2, S2 
and J2 of the open dN and dN–2 shells for the MVAA 
when the selection rules ΔL2  =  0 and ΔS2  =  0 are ful-
filled: solide line,  transitions 3s3dN2  –  3s23dN2–2εs 
and 2p5

3/2ndN2 – 2p63dN2–2εp3/2 ; broken line, 2p5
1/2ndN2 – 

2p63dN2–2εp1/2 . (a) variation of L2, S2; (b) variation of J2 
[18].

Fig. 5. Dependence of the maximal values of Auger am-
plitude (MVAA) for various channels of Auger transi-
tions 3s3dN2 – 3s23dN2–2εl  [18]. The data are given for 
the sets with both values of the total moment of Auger 
electron j = l ± 1/2, however, in all cases MVAA corre-
sponds to j = l + 1/2.
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of the binding energies, system difference and other 
physical and chemical quantities. This symmetry is not 
distorted by some important many-electron effects.

Configuration with two open shells with the same 
orbital quantum number also obtains additional 
symmetry properties. For such a configuration the 
new more exact wavefunction basis can be intro-
duced, where the classification of terms according to 
their parentage in the isoelectronic sequence of con-
figurations is used. In this basis, the main coefficient 
of the Coulomb exchange energy g0 becomes diago-
nal as well as some correlation effects are taken into 
account. Such a classification enables one to obtain 
the functional, which automatically guaranties the 
orthogonality of wavefunctions to the functions of 
the lower states of the same symmetry. Description 
of the new basis was later reformulated in a more 
strict mathematical form using the isospin concept: 
the n1l and n2l electrons can be considered as two 
states of the l electron corresponding to two possible 
values 1/2 and –1/2 of the isospin quantum number.

The amplitudes of Auger transitions have a rather 
complex expression and for the transitions between 
two configurations differ by several orders. However, 
the maximal values of Auger amplitudes vary with N 
in a rather regular manner and their quantum num-
bers obey the unexpected selection rules. It indicates 
the existence of still unknown symmetries for inter-
configuration matrix elements.

References

 [1] A.P.  Jucys, I.B.  Levinson, and V.V.  Vanagas, 
Mathematical Aparatus of the Angular Momentum 
Theory (Gordon and Breach, New York, 1964).

 [2] E.U.  Condon and G.H.  Shortley, The Theory of 
Atomic Spectra (Cambridge University Press, 
Cambridge, 1935).

 [3] A.R.  Edmonds, Angular Momentum in Quantum 
Mechanics (Princeton University Press, Princeton, 
1957).

 [4] G. Racah, Theory of complex spectra. I, Phys. Rev. 
61(3–4), 186–197 (1941); II, Phys. Rev. 62(3–4), 428–
462 (1942); III, Phys. Rev. 63(3–4), 367–382 (1943).

 [5] G.  Racah, Theory of Complex Spectra. IV, Phys. 
Rev. 76(9), 1352–1365 (1949).

 [6] R.D. Cowan, The Theory of Atomic Structure and 
Spectra (University of California Press, Berkeley, 
CA, 1981)

 [7] Z.B.  Rudzikas, Theoretical Atomic Spectroscopy 
(Cambridge University, 2007).

 [8] B.R.  Judd, Second Quantization and Atomic 
Spectroscopy (John Hopkins, Baltimore, 1967).

 [9] L.N.  Labzovskii, Theory of Atomic Structure of 
Electronic Shells (Nauka, Moscow, 1986) [in 
Russian].

 [10] B.R. Judd, Lie groups for atomic shells, Phys. Rep. 
285(1), 1–76 (1997).

 [11] B.G. Wybourne, Symmetry Principles and Atomic 
Spectroscopy (New York, Willey, 1970).

 [12] P.  Bogdanovich, R.  Karazija, and J.  Boruta, The 
orthogonality of wave functions to the functions 
of configurations lower-lying energetically and 
the validity of Brillouin’s theorem in the case of 
electronic configuration n1l

N1n2l
N2, Litov. Fiz. Sb. /

Liet. fiz. rink. 20(2), 16–24 (1980) [in Russian].
 [13] J.  Kaniauskas and R.  Karazija, Algebraic expres-

sions of energy for terms of the highest multipli-
city and related ones, as well as for ground and 
highest energy levels, Litov. Fiz. Sb./Liet. fiz. rink. 
25(2), 31–41 (1985) [in Russian].

 [14] R.J.  Karazija and L.S.  Rudzikaitė, Symmetry of 
electronic shell in its lowest state and the interval 
rules for binding energines, Opt. Spektrosk. 68(3), 
487–492 (1990) [in Russian].

 [15] R.  Karazija, A.  Udris, A.  Kynienė, and S.  Kučas, 
On the symmetry with respect to a quarter of the 
electronic shell for the intensities of the strongest 
lines in lanthanide spectra, J. Phys. B At. Mol. Opt. 
Phys. 29(11), L405–L409 (1996).

 [16] R.  Karazija and A.  Kynienė, Symmetry of some 
properties of lanthanides and actinides with re-
spect to a quarter of the f N shell, J. Phys. Chem. A 
102(6), 897–903 (1998).

 [17] P. Bogdanovich, A. Kynienė, R. Karazija, R. Kar-
puškienė, and G.  Gaigalas, Additional symmetry 
for the electronic shell in its ground state and ma-
ny-electron effects, Eur. Phys. J. D 11(2), 175–183 
(2000).

 [18] A. Kynienė and R. Karazija, Maximal values of the 
Auger amplitudes and propensity rules for their qu-
antum numbers, Phys. Scr. 70(5), 288–294 (2004).

 [19] J.C.  Slater, Quantum Theory of Molecules and 
Solids. Vol. 4: The Self-Consistent Field for Molecules 
and Solids (McGraw-Hill, New York, 1974).

 [20] B.R.  Judd, Atomic shell theory recast, Phys. Rev. 
162(1), 28–37 (1967).

 [21] Z.B. Rudzikas and J.M. Kaniauskas, Quasispin and 
Isospin in the Theory of Atom (Mokslas Publishers, 
Vilnius, 1984) [in Russian].

 [22] W.C.  Martin, Some aspects of the energy-level 
structures of lanthanide atoms and ions, Opt. Pura  
Apl. 5, 181–191 (1972).

 [23] G.V.  Ionova, V.G.  Vokhmin, and V.I.  Spicyn, 
Regularities in Properties of the Lanthanides and 
Actinides (Nauka, Moscow, 1990) [in Russian].

 [24] A. Kramida, Yu. Ralchenko, and J. Reader; NIST 
ASD Team, NIST Atomic Spectra Database (ver-
sion 5.1) (online) (National Institute of Standards 
and Technology, Gaithersburg, MD, 2013), http://
physics.nist.gov/asd, accessed 23/03/2014.

 [25] J.F. Wyart, Analysis of lanthanide atomic spectra: 
Present state and trends, J. Opt. Soc. Am. 68(2), 
197–205 (1978).



R. Karazija / Lith. J. Phys. 54, 205–216 (2014)216

 [26] G.V.  Ionova, Periodicity in the variation of pro-
perties for series of d and f elements, Usp. Khim. 
59(1), 66–85 (1990) [in Russian].

 [27] V.I.  Spicyn, V.G.  Vokhmin, and G.V.  Ionova, 
Interval rules for ionization energies and oxidation 
potentials of f-elements, Dokl. AN SSSR 294(3), 
650–653 (1987) [in Russian].

 [28] Ch. Froese Fischer, Hartree-Fock calculations for 
atoms with inner-shell vacancies, Phys. Rev. Lett. 
38(19), 1075–1076 (1977).

 [29] Ch. Froese Fischer, Brillouin’s theorem for excited 
nlqnlq’ configurations. J. Phys. B At. Mol. Opt. Phys. 
6(10), 1933–1941 (1973).

 [30] V. Šimonis, J. Kaniauskas, and Z. Rudzikas, Isospin 
basis for electronic configurations n1l

N1n2l
N2 , Litov. 

Fiz. Sb. / Liet. fiz. rink. 22(4), 3–15 (1982) [in 
Russian].

 [31] R. Karazija, Sums of Atomic Quantities and Mean 
Characteristics of Spectra (Mokslas, Vilnius, 1991) 
[in Russian].

ATOMŲ SU VIENU IR DVIEM ATVIRAIS SLUOKSNIAIS PAPILDOMOS 
SIMETRIJOS SAVYBĖS

R. Karazija

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Darbe nagrinėjamos atomo pagrindinės būsenos ir 

su ja susijusių dydžių, taip pat konfigūracijų, turinčių 
du atvirus elektronų sluoksnius su tuo pačiu orbitiniu 
kvantiniu skaičiumi, bei Ožė šuolių maksimalių ampli-
tudžių papildomos simetrijos savybės. Pateiktos aukš-
čiausio multipletiškumo termų, pagrindinio ir aukščiau-

siojo lygmenų energijos išraiškos esant vienam atviram 
sluoksniui. Nagrinėjama konfigūracijos n1l

N1n2l
N2 bū-

senų klasifikacija, naudojantis jų kilme izoelektronėje 
konfigūracijų sekoje, ir tokios banginių funkcijų bazės 
savybės. Aptariamos maksimalių Ožė šuolių amplitu-
džių atrankos taisyklės.
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